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Scalar dispersion in a periodically reoriented potential flow: Acceleration via Lagrangian chaos

D. R. Lester™ and M. Rudman
CSIRO Mathematical and Information Sciences, Locked Bag 33, Clayton South, Victoria 3169, Australia

G. Metcalfe
CSIRO Materials Science and Engineering, P.O. Box 56, Highett, Victoria 3190, Australia

M. G. Trefry’
CSIRO Land and Water, Underwood Avenue, Floreat, Western Australia 6014, Australia

A. Ord

School of Earth and Environment, University of Western Australia, 35 Stirling Highway Crawley, Western Australia 6009, Australia

B. Hobbs'
CSIRO Petroleum Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia
(Received 12 November 2009; published 29 April 2010)

Although potential flows are irrotational, Lagrangian chaos can occur when these are unsteady, with rapid
global mixing observed upon flow parameter optimization. What is unknown is whether Lagrangian chaos in
potential flows results in accelerated scalar dispersion, to what magnitude, how robustly, and via what mecha-
nisms. We consider scalar dispersion in a model unsteady potential flow, the Lagrangian topology of which is
well understood. The asymptotic scalar dispersion rate ¢ and corresponding scalar distribution (strange eigen-
mode) are calculated over the flow parameter space Q for Peclét numbers Pe=10'—10* The richness of
solutions over Q increases with Pe, with pattern mode locking, symmetry breaking transitions to chaos and
fractally distributed maxima observed. Such behavior suggests detailed global resolution of Q is necessary for
robust optimization, however localization of local optima to bifurcations between periodic and subharmonic
eigenmodes suggests novel efficient means of optimization. Acceleration rates of 150 fold at Pe=10* are
observed; significantly greater than corresponding values for chaotic Stokes flows, suggesting significant scope
for dispersion acceleration in potential flows in general.
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I. INTRODUCTION

Over a quarter of a century ago, Aref [1] recognized that
the kinematic advection equation

x=v(x,7), (1)

describing evolution of the position x of a passive tracer over
time 7 in a fluid velocity field v represents a dynamical sys-
tem rich enough to exhibit chaotic dynamics, even in the
limit of vanishing Reynolds number. This phenomena,
termed chaotic advection [2] or Lagrangian chaos has im-
portant implications for fluidic mixing and scalar transport,
and has been exploited in a wide range of applications. It has
been demonstrated [3] that chaotic dynamics can signifi-
cantly increase the rate of dispersion of diffusive scalars in
Stokes flows, facilitating accelerated heat transfer [4], diffu-
sive mixing [5], chemical reaction [6], and low Reynolds
number scalar transport in general [7].

Despite the irrotational nature of potential flows, it has
more recently been demonstrated computationally [8,9] and
experimentally [10-12] that Lagrangian chaos can also occur

*daniel lester @csiro.au
"University of Western Australia, School of Earth and Environ-
ment, 35 Stirling Highway Crawley, WA 6009

1539-3755/2010/81(4)/046319(11)

046319-1

PACS number(s): 47.52.+j,05.45.—a, 47.51.+a

in unsteady potential flows via the transient crossing of
streamlines. To our knowledge there exist only a handful of
papers [8—14] dealing with Lagrangian chaos in potential
flows, and an outstanding question is whether scalar disper-
sion acceleration via Lagrangian chaos also extends to such
flows. Furthermore, what magnitude accelerations are pos-
sible, how robust are the phenomena, and what are the gov-
erning mechanisms of dispersion acceleration in potential
flows?

For a given flow geometry, an open question is what forc-
ings and/or perturbations generate global Lagrangian chaos
and optimal scalar transport. To date, no investigation of dis-
persion optimization via simultaneous diffusion and La-
grangian chaos has been performed for potential flows.

These questions are also of direct relevance to transport in
porous media, the macroscopic fluid mechanics of which are
described by the Darcy equation as a potential flow. Appli-
cations in porous media include geothermal energy, in situ
mining, contaminated site remediation, and shale oil recov-
ery, and Lagrangian chaos is also relevant to understanding
geophysical transport phenomena in processes such as ore
body formation and mineral deposition. Although this study
makes no claim as to direct modeling of porous media appli-
cations, coupled potential flow advection and Brownian dif-
fusion represents a scalar transport mechanism qualitatively
similar to that of porous media at the macroscale. In particu-
lar, transport in porous media differs in that heterogeneities
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in porosity and permeability alter the transport and Darcy
equations, respectively, and furthermore scalar diffusion
manifests as a hydrodynamic dispersion which is often an-
isotropic and several orders of magnitude larger than the un-
derlying molecular diffusion. As is argued in Sec. IV, such
differences do not change the qualitative fundamentals of
scalar dispersion acceleration in potential flows.

Hydrodynamic dispersion in porous media at the macros-
cale arises from the coupling of molecular diffusion with
Lagrangian chaos (via Stokesian microflows) generated by
the tortuosity of porous media at the microscale. The primary
difference between Lagrangian chaos in porous media at the
microscale and macroscale is that the former case arises
naturally from Stokes flow within the geometrically complex
pore space and so cannot be controlled, whereas the latter
may be invoked and controlled by judicious “programming”
of macroscopic flows as approximated by the Darcy equa-
tion. In general, scalar dissipation (whether driven by hydro-
dynamic dispersion or Brownian diffusion) of any magnitude
dramatically alters the dynamics of chaotic advection [3],
and so hydrodynamic dispersion can rarely be ignored in
chaotic porous media flows.

In this paper we consider scalar transport resulting from
combined diffusion (as modeled by the Laplacian operator)
and advection in potential flows. Specifically we consider
scalar transport in a two-dimensional (2D) unsteady model
potential flow to examine the nature of scalar dispersion ac-
celeration via Lagrangian chaos. This model flow contains
several flow control parameters, which form a multidimen-
sional parameter space Q over which the Lagrangian dynam-
ics can vary significantly [8]. Dispersion problems also in-
volve the Peclét number, Pe=LV/D, where L, V respectively
are the characteristic length and velocity scales of the system
and D is diffusivity, with Pe quantifying the relative time
scales of advection to diffusion. We wish to resolve scalar
transport over the parameter space Q X Pe to elucidate the
global structure of transport in this model system.

Evidence [15] from chaotic Stokes flows suggests that the
rate of scalar dispersion may exhibit rich fractal-like behav-
ior over Q X Pe, hence it is anticipated that such behavior
extends to chaotic potential flows. In this work we globally
resolve this space to high precision to determine the opti-
mum level of scalar dispersion enhancement in the model
potential flow and identify relevant governing mechanisms.
By establishing the applicability of these results to potential
flows in general as well as more complex porous media, we
can determine the scope for dispersion enhancement for a
wide range of porous media applications.

II. PROBLEM DEFINITION

A. Scalar dispersion in potential flows

To study scalar dispersion in potential flows, we consider
the evolution of a diffusive scalar ¢ in an arbitrary flow
domain D, governed by the advection-diffusion equation
(ADE)

d¢ 1

—+v-Vop=—V?¢, 2

Py =5V ¢ (2)
subject to the initial conditions ¢(x,0)=d,(x) (where
Ipdod*x=0 without loss of generality) and homogeneous
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Neumann boundary conditions n-V¢|,,=0, where n is the
unit normal outward vector on JD. To resolve the global
parametric structure of scalar transport, we need to resolve
the dispersion rate generated by the ADE over the flow pa-
rameter space Q for various values of the Peclét number Pe.
Previous studies [7,8,15] have shown complex fractal-like
distributions of solutions to Eq. (2) over the parameter space
Q for reoriented Stokes flows, and so it is anticipated that
similar behavior may occur in potential flows. As such, effi-
cient methods are required to resolve Q to high resolution,
and so we employ the composite spectral method [15]. This
method does not seek to directly solve (2), but rather deter-
mines the dominant “strange eigenmodes” [16—18] ¢, of the
advection-diffusion operator L[¢]=-v-Ve+1/PeV?¢p, over
Q such that

K
¢(X,t) = 2 ak(t)qok(x,t)e)‘kt, (3)
k=0

where «(f) are the eigenmode weights (which may be un-
steady due to the non-self adjoint nature of £ [19]) arising
from the initial condition ¢y, \; are the eigenvalues of L,
and k is ordered such that Re(\;) =Re(\y,;), with all Re(\;)
negative. For velocity fields v which are T periodic in time,
the strange eigenmodes are also T periodic, and so in this
case are in essence the Floquet modes of the £ operator. For
sufficiently long times, the most slowly decaying mode per-
sists:

B(x.1) — ho(x,1) = ap(1) @o(x, 1), (4)

hence the asymptotic decay rate of the scalar field ¢ is quan-
tified by |\o|. Note that generally as more of the initial signal
¢, is projected onto the most regular (i.e., lowest variance)
eigenmode, there is a tendency for |a(0)| >|a(0)|, and fur-
thermore scalar variance is preferentially transferred from
a;— ap with time [19] due to £ being nonself-adjoint. As
such, \( not only represents an exact measure of scalar dis-
persion in the asymptotic limit #— o, but in general is also a
useful approximation of dispersion for all but short times 7
= 1/(IN\ [ =[N

The nonself-adjoint nature of £ also admits complex
eigenmodes, realized as conjugate pairs ¢;= @, = i<p}'< and A,
=\, £ i\;. Hence the conjugate eigenmode pair manifests in
real space as

o (x. 0 = ay()}{ gf(x.1)cos[ N (1 — 1,)]

+ @h(x, Dsin[ Nz — 1) [}eM, (5)

where both o, (f) and 7, are dictated by the initial conditions.
As ¢ and npj; may only be T periodic in time, complex pairs
give rise to two superposed eigenmodes (¢}, ¢}) separated in
time by phase angle 7/2, which are either subharmonic or
quasiperiodic depending upon whether )\f< is commensurate
with 7/ T. From Eq. (5), the asymptotic scalar dispersion rate
for complex eigenmodes is Aj=Re[\o].
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FIG. 1. (Color online) (a) Contours of dipole flow stream function with inlet (outlet) x* (x7) at r=1, O=7/2 (#=-/2). (b) Superposed
streamlines of the RPM flow for ®=2/3 and (c) corresponding Hamiltonian H in the singular limit 7— 0.

Calculation of the dominant eigenmode ¢, and associated
eigenvalue \, using the composite spectral method [15] for
the ADE resolves the asymptotic rate of scalar dispersion and
the associated dominant decaying pattern over the parameter
space Q X Pe.

B. Rotated potential mixing flow

As the mixing properties and Lagrangian topology of the
so-called rotated potential mixing (RPM) flow are well un-
derstood [8], this flow serves as a convenient model for the
study of scalar dispersion in potential flows. The RPM flow
is based upon a simple dipole flow arising from a source (+)
and sink (=) located at x*:{r,0}=(1,7/2) and x :{r, 6}
=(1,—m/2), respectively, as depicted in Fig. 1(a). The flow
domain D:{r,8}=[0,1]X[-m,7] under consideration is
bounded on JD by the separating streamlines at r=1, and we
consider the RPM flow in closed mode, such that a particle
which exits the sink x~ is instantaneously re-injected at the
source x* with the corresponding streamnumber preserved.
Although instantaneous reinjection is nonphysical, the addi-
tion of a time delay to the reinjection protocol does not alter
the Lagrangian topology of the system [8]. The source-sink
pair sets up a dipole flow with stream function ¢

2r cos 0
g&(r,@):arctan( 7 ),

-r

(6)

generating the flow velocity V=V X ¢€,, where €, is the unit
vector normal to D. The simplest stirring protocol to intro-
duce transient crossings of streamlines is to let ¥V operate for
some time 7, after which the dipole positions are instanta-
neously reoriented about the origin through angle ®. This
reoriented flow operates for time 7, then is further reoriented
by O, and so on. This unsteady flow is the RPM flow, the
streamlines of which are depicted in Fig. 1(b), and the RPM
velocity field is approximately

T

v(x,1;7,0) = 0(r,0+ > (7)

where |x| denotes the integer part of x. The approximation (7)
is exact for finite 7 in the limit of vanishing Reynolds num-

ber Re. Note that the RPM flow is temporally periodic with
period T=j7 for rational ®/2m=k/j, with integers k, j. The
adjustable flow parameters 7, ® for the RPM flow form the
flow parameter space Q:{7,®}=[0,%) X[, ]| over which
the Lagrangian dynamics vary significantly [8]. The RPM
flow has been experimentally realized [10,11] and dye advec-
tion experiments were found to agree very well with theory.

As the flow field is divergence-free (V-v=0), the system
(1) is conservative (Hamiltonian), such that the unsteady
Hamiltonian H corresponds to the reoriented stream function

H=¢<r,0+ 5@). ®)
T,

In the limit 7— 0, the Hamiltonian is steady and equivalent
to the time-averaged reoriented stream function:

j-1

1 k
= W(r,6-n0) for O =27,
H= J n=0 J

{7 ©)
o )

f Y(r,0)d6 for irrational—,
o T

as is depicted in Fig. 1(c) for ®=27/3. Note that due to the
reflection-reversal symmetry V(r, 8)=—vV(r, 6+ ), H in this
limit is identically zero for all cases in (9) except for rational
® where the denominator j is odd.

Following the previous subsection, we define the rate of
scalar transport enhancement g in the RPM flow as the ratio
of A, between the unrotated case (®=0) and that for a par-
ticular stirring protocol ®, 7

Re[Ao]
Re[Aolo-o]”
where the reference case \y|g—o only changes with Pe. A
lower bound for ¢ is given by the slowest decaying Laplac-

ian eigenmode over D (with B3, ; is the first zero of J{(r), the
first order Bessel function of the first kind)

™ PeRe[\g|e-o]

q (10)

<1, (11)
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and so it is potentially possible to retard transport in the
RPM flow with respect to the base dipole flow (®@=0).

III. NUMERICAL METHOD

We require a method to calculate ¢y(x) and \ efficiently
over the parametric space Q X Pe. The composite spectral
method [15] achieves this by exploiting the symmetries in-
herent to the RPM flow (7) to rapidly construct a spectral
representation of the AD operator £ projected over one pe-
riod 7 in the form of the matrix operator S*. Solution of the
dominant eigenvector and eigenvalue of S* corresponds to
spectral approximations of the dominant eigenmode ¢, and
eigenvalue \(. Implementation of this method for the RPM
flow is briefly outlined as follows.

The Laplacian eigenfunctions w,(x) over D with homo-
geneous Neumann boundary conditions serve as basis func-
tions for spectral expansion of the scalar field ¢. These func-
tions are ordered in terms of increasing Laplacian eigenvalue
u:, and the expansion is truncated at N terms ¢(x,?)
=3 D, (1) w,(x), with the length N vector of expansion co-
efficients @, (r) denoted @®. The minimum size N of the spec-
tral basis is ultimately dictated by the variance of the domi-
nant eigenmode ¢, and so is expected to increase with Pe.
The ADE (2) may be represented spectrally as

dd 1
o (H@’T(I) - %D> - D=A(r)- D, (12)

where Hg (1) is an N X N matrix representing the advection
operator —v-V, and D is the spectral diffusion operator com-
prising of a constant diagonal N X N matrix of eigenvalues
,u,i As the RPM velocity v is piecewise constant in time, H
is likewise, such that

He () =R¢™ - H - Rg"7, (13)

where Rg is the operator associated with a rotation of the

solution through angle ®, and H is the spectral representa-
tion of the operator —v-V.
The fundamental matrix solution S(z) to Eq. (12) is

S(t)=eXP{f A(é’)dé}, (14)
0

where
®(1) =S(1) - P(0), (15)
ds
” =A(r)-S(r). (16)

From Eq. (12), A(z) is piecewise steady and so Eq. (14) may
be decomposed as

S(nt) = exp{(R’é)_1 <Ay R_")T}- ... exp{(Rg-Ag- RI)T}
-exp{Ay7}, (17)
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for any integer n, where Ay=A(0). The rotation operations
R{-Ay-Ry in Eq. (17) represent a similarity transform, and
thus commute with the exponential operator, resulting in the
simplified expression

S(n7) =Ry - (Rg' - exp{Ay7H)". (18)

As such, eigenanalysis of the advection-diffusion operator
can be performed over a single offset period 7, where S* is
the matrix solution operator over time 7 in a frame moving
with the dipole

L1
S":R(:)1 -exp{(H—P—D)T}. (19)
e

Using this expression, the spectral coefficients of the domi-
nant eigenmode at 7=0 ¢;(x,0) (in the dipole frame) and
associated decay rate exp{—\,7} are, respectively, given by
the dominant eigenvector and eigenvalue of S*. Simplifica-
tion to Eq. (19) obviates the need to calculate the full funda-
mental solution S(7), which is expensive for large j and
impossible for irrational values of ®/ . Spectral representa-
tion of the advection operator H can involve a significant
computational effort, however H needs only to be calculated
once, with the parameters 7, ®, and Pe varied independently
as per Eq. (19).
The coefficients of H are calculated as

H;, = f o (X)¥(x) - Voo (x)d"x, (20)
D

which may be simplified by using V=V X i, =€, with the
identity

0 (VX)) Vo= (Vo X V) =V - (Vo X dhw)),
21)

to give

[—AIj’kz f ¥ (Vo; X Vap)d"x - 3€ n- (Vo X o).
D oD
(22)

The first term on the right-hand side of Eq. (22) represents
transfer between spectra within D and the second represents
flux across the boundary D which simplifies to

& &wk
LT (wj(?—6 ) |_,d6 (23)

and is nonzero only for (w;,w,) either (odd, even) or (even,
odd) with respect to . As this term represents the total scalar
flux leaving domain D, it is set to zero to emulate the RPM
operating in closed mode, effectively forcing all scalar
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exiting at X~ to be reinjected at x*.

The singular nature of these points poses a computational
problem, and so they are excluded by reducing the compu-
tational domain to D.:{r,0}=[0,1-103] X [-7,7]. In es-
sence, this operation changes the source/sink nature of x*, x~
to inflow/outflow boundaries in the neighborhood of x*, x~
on JdD,, and the closure operation above [forcing Eq. (23)

PHYSICAL REVIEW E 81, 046319 (2010)

equal to zero] enforces periodic conditions (namely, reflec-
tion across y=0) upon these boundaries.
This symmetry of the dipole stream function (see Fig. 1)

simplifies calculation of H ' x as only combinations of w;, wy
which are respectively even and odd in € are nonzero. The 6
component of the domain integral in Eq. (22) has analytic
solutions for these combinations

n+p even 0,

fﬂ. ’J’(r, 0)003(71 0)COS(p6)d0= ar

n+p odd

n+p even O,

f ’ (r, O)sin(nO)sin(pO)d = m

and so only the » components of these integrals require nu-
meric calculation. We exploit the recurrent nature of the or-
thogonal basis functions ,(x) by using the fast collocation
method of Levin [20] to compute these integrals, using
Chebyshev polynomials as a collocation basis.

Given calculation of H for given N (dictated by Pe), the
task remains to determine S* discretely over 7€ [ Tpin» Tmax)
and O e [—m, ] to resolution M. X Mg, such that 57=(7,y,
— Tmax)/ M, and 8@ =2/ M ;. Construction of A, is straight-
forward as D is sparse and analytic, and calculation of the
matrix exponentials exp{S7A}, exp{TminAo} is performed ef-
ficiently via the fast integration method [21]. Subsequent
time-stepping forward by 57 of the operator exp{(7+ 7)Ay}
is achieved by matrix multiplication by exp{57A}.

For each value of 7, ® is varied from — to 7 in incre-
ments of 0 such that S*=R(;(E).S*, where the rotation op-
erator R;é) is sparse and analytic. For each value of ©, the
dominant eigenvectors and eigenvalues of S* are then calcu-
lated via the Arnoldi method implemented in the AARPACK
distribution, with the previously calculated eigenvector used
as an initial guess to aid convergence. A target tolerance of
107'% is generally achieved within 100 iterations when a Kry-
lov subspace dimension of order 200 is used. As the operator

L is nonself-adjoint, S* is real and asymmetric (with H
skew-symmetric and D diagonal) and so convergence of the
Arnoldi method can be slow for large N, imposing a limit of
application of the method for very large Pe, i.e., Pe=10".

For Pe=10'-10* the computational space of interest
Q.:{r,0}=[1072,10°] X [-r, r] is broken down into subre-
gions of [ Tyin» Tmax] With different 87, 0, depending on the
level of resolution required, see Fig. 2. The calculated eigen-
vectors and eigenvalues represent spectral approximations of
the dominant eigenmode ¢ (x,7) and associated decay rate
N\g of the £ operator over the control parameter space Q
X Pe.

n+p odd

[n=pl |n+pl
(- 1)(\n—ﬂ|—l)/2 rr + (- 1)(\n+p\—l)/2i’ (24)
In - pl n+ pl
n—pl |n+pl
(_ 1)(\n—p\—1)/2r_ _ (_ 1)(\n+p\—1)/2r_’ (25)
In - pl n+ pl

IV. RESULTS AND DISCUSSION
A. Scalar dispersion acceleration in the RPM flow

Distributions of the enhancement factor ¢ over Q for Pe
=10'-10* are illustrated in Fig. 2. The distribution of g is
rich, with increasingly fine scale structure with Pe, and mul-
tiple local optima (maxima) across Q. For all Pe, both the
enhancement factor g and the underlying eigenmodes are
symmetric in Q across ®=0 due to the double symmetry of
the RPM flow [8], which is also reflected in symmetry of the
Poincaré sections across @=0. Note that due to this symme-
try, only ® e[0,7] is shown in Fig. 2. However, the
reflection-reversal symmetry [along the x axis in Fig. 1(a)]
which manifests as a reflection symmetry along #=—0/2 in
Poincaré sections [8] does not persist for the strange eigen-
modes due to the diffusion operator altering the orbits of
scalar parcels. Aside from this symmetry, the distribution of
q over Q shares many features with that of the chaotic
Stokes flow of the rotated arc mixer [7,15].

For low values of 7, expansive ridges (and valleys) of
increased (and decreased) ¢ emanate from rational values of
O/ along the 7=0 axis. The distribution of these expansive
tonguelike structures is similar [22] to that of Arnol’d
tongues for frequency locking [23], which also emanate from
rational values of the offset parameter for the standard circle
map. Along the tonguelike structures in Q the corresponding
eigenmodes are rotationally symmetric, with j-fold symmet-
ric eigenmodes occurring at @=27k/j for integers k, j as
depicted in Fig. 3, and so tongues exhibit mode locking with
respect to the offset angle ©.

Mode locking is a direct consequence of the existence of
a steady rotationally symmetric Hamiltonian H for rational
O/ in the limit 7— 0, as given by Eq. (9) and illustrated in
Fig. 1(c). The corresponding Poincaré sections for the kine-
matic problem (1) are also rotationally symmetric in 7—0
[8]. As the Hamiltonian and velocity field v are steady in this
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FIG. 2. (Color online) Distribution of the dispersion acceleration
factor ¢ over flow parameter space Q for (a) Pe=10', (b) Pe=102,
(c) Pe=107, and (d) Pe=10* Note logarithmic scaling of contours
in ¢ in (c) and (d).
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limit, the corresponding eigenmodes are likewise [albeit ex-
ponentially decaying as per (3)]. The form of these eigen-
modes is “programmed” by the steady Hamiltonian, albeit
smeared by diffusion, and toward the limit Pe— o, the
eigenmode approaches the Hamiltonian itself. At low 7 for
either even j or irrational @/, the time-averaged flow is
zero, and so the ADE (2) is well-approximated by a diffusion
equation, hence the dominant eigenmode is similar to the
slowest decaying Laplacian eigenfunction and )\0~,6’%‘1/ Pe
or g~ 1, as is most clearly reflected in Figs. 2(a) and 2(b). In
this case, scalar transport is actually retarded with respect to
the no-reorientation (®=0) case as the unreoriented dipole
flow generates some enhanced transport due to the velocity
difference across neighboring streamlines. Such phenomena
is evident in Fig. 4, which illustrates ¢ along ©® for 7=0.01 at
Pe=10'. Local maxima occur around odd values of J, and
minima around even values (with retardation (g<<1 occur-
ring at j=2), with the strength of these extrema decreasing
with increasing j.

With increasing 7, the mode-locked tongues collide at
some critical value 7. Competing resonances between
tongues lead to period-doubling bifurcations in the kinematic
problem for 7> 7, and fully chaotic dynamics ensue at the
accumulation point of the cascade [8], as is the case for the
standard circle map. This route to chaos is reflected in the g
distributions in Fig. 2, where an accumulation point around
7~ 2 is observed, at which point the mixing template gener-
ates space-filling Lagrangian chaos. For moderate values
(Pe=<10?) of Pe, global (with respect to Q) optima lie on the
Arnol’d tongues for 7=<2, but as Pe increases to the
convection-dominated regime (Pe=10?), the optima move
up above the accumulation point 7~2 as per Fig. 2.

This transition is associated with an evolution in the La-
grangian topology from globally regular (and rotationally
symmetric in the Arnol’d tongues) to globally chaotic with
increasing 7 (as evidenced in the Poincaré sections [8]).

Why do the chaotic stirring protocols achieve less scalar
dispersion acceleration than regular protocols for moderate
or low Pe? Consider the eigenmode decay rate A, in terms of
the eigenmode variance ||@,||> and gradient variance |V &

1 IV&lP

I{e[)\O] = — ’
Pe {|@|®

(26)

where |-, - denote the L, norm over D and temporal average
over 7, respectively [17]. As such, the rate of scalar disper-
sion is given by the average scalar gradient |V &y|J*/||&,|,
and as eigenmodes are persistent, the dispersion rate is dic-
tated by the gradient which can be maintained. If the domi-
nant eigenmode is represented spectrally as

oo

@o(x,1)eM = D (1) w,(x), (27)

n

then the coefficients a%,a%, ,ai represent a “scalar en-

ergy” spectrum of increasing wave number n, subject to the
normalization X7, (1)>=1. The decay rate \ is directly gov-
erned by this spectrum, such that energy spectra weighted at
high wave numbers decays faster than low wave number
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d)

FIG. 3. (Color online) Examples of mode locking of strange eigenmodes to Arnol’d tongues at Pe=103 for (a) ®=2?”, (b) @:27”, (c)

@:z?ﬂ, and (d) @:2{.

spectra. This spectrum evolves via Eq. (2) as

1da’ A ,u2 5
E dln = E Hm,naman - P_ga

m

(28)

ne

where the advection operator I:Im,,, for chaotic flows acts to
transfer energy from low to high wave numbers, whereas
diffusion acts to remove energy across the spectrum at a rate
which scales with the square of the wave number. Although

higher wavenumber modes can be populated by ﬁn’m without
limit (i.e., creation of striations through stretching and fold-
ing), these eventually cannot be sustained due to excessive
diffusion, as is reflected in a healing of two striations. As
eigenmodes driven by a temporally periodic velocity field
must be either periodic subharmonic or quasiperiodic; such
eigenmodes must persist and so the transfer of scalar energy
by these mechanisms must balance over a flow period, and
so if diffusion is strong, few striations in chaotic flows can
persist.

Hence at low Pe, chaotic flows which would otherwise
generate high wavenumber eigenmodes can result in lower
wavenumber distributions than regular flows at the same Pe.
This is reflected in Figs 5 and 6, which respectively show the
energy spectra for chaotic and regular RPM stirring protocols
at various Pe=10° and Pe=10* The chaotic spectrum
changes markedly due to the fact that the highly striated
structure is not sustainable at low Pe, whereas the corre-
sponding spectra for a regular flow shows little change with
Pe. For the RPM flow, the mode-locked Hamiltonian for low
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FIG. 4. Influence of mode locking upon transport enhancement
g along © at low 7 (0.01) for Pe=10".

7 and small, odd j generates rotationally symmetric eigen-
modes (Fig. 3) with robust features (with respect to diffu-
sion) which persist at low Pe, and so such regular stirring
protocols are globally optimal at such Pe. In general chaotic
flows only deliver significantly accelerated scalar dispersion
in the so-called advection-dominated regime [6] (Pe=10?),
where higher wave numbers can be maintained, and con-
versely may be suboptimal with respect to regular flows for
Pe<10°.

For all Pe, the distribution of g exhibits horizontal “strip-
ing” in the region above 7~2, which become increasingly
refined with Pe as per Fig. 2. The distribution of ¢ at Pe
=10* shown in Fig. 7(a) (with 7 now scaled linearly) closely
matches the so-called “stability map” [Fig. 7(b)] for the
RPM flow [8]. The black regions of the stability map corre-
spond to parameter values which give rise to stable period-1
fixed points in the domain D for the kinematic problem Eq.
(1). These period-1 points occur at the origin at 7=2n/3 for
integer values of n, where they are always elliptic and so are
associated with nonmixing island structures. With increasing
7, the points can undergo a series of period-doubling bifur-
cations as the stable islands break down to space-filling
chaos before leaving the domain D. The horizontal bands in
Fig. 7(b) arise from stable period-1 points prior to period
doubling, whereas the steplike structure on the low-0 region
of Fig. 7(b) corresponds to regions where the elliptic points
do not bifurcate at all.

Note that the RPM flow also exhibits a period-halving
cascade where chaotic points converge initially to periodicity
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FIG. 5. Strange eigenmode scalar energy spectrum for chaotic
mixing protocol at Pe=10* (black) and Pe=103 (gray).
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FIG. 6. Strange eigenmode scalar energy spectrum for regular
mixing protocol at Pe=10* (black) and Pe=103 (gray).

and ultimately period halve to a stable elliptic point with
increasing 7. These resultant elliptic points give rise to a
second stability map, however as the associated island struc-
tures are typically very small and close to the boundary D
[8], reverse-cascade elliptic points do not appear to have an
effect on the distribution of ¢ over Q.

From Fig. 7, the absence of period-1 points in the kine-
matic problem (1) corresponds very well with optimal re-
gions of scalar transport at high Pe for the advection diffu-
sion Eq. (2), suggesting elliptic islands do represent

r
i150.7
1.0
27
(0]
0 i1 112 1 323 1 a2
(b) 876 5 4 7 3 857 2

FIG. 7. Correspondence between (a) distribution of dispersion
rate ¢ across Q for Pe=10* and (b) instability bands of the RPM
flow, where the white regions denote the absence of a period-1
elliptic point for the kinematic problem Eq. (1).
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significant barriers to transport in the advection-dominated
regime. With decreasing Pe, these bands in ¢ broaden and
coalesce, suggesting that resonances due to periodicity of
reinjected fluid parcels do persist. At Pe=10* the stability
bands map directly to the regions of low g, suggesting that
further increases in Pe do not refine these structures further,
and so these locally optimal regions are parametrically ro-
bust with increasing Pe. The distribution of g also corre-
sponds well with the distribution of the Lyapunov exponent
over Q calculated in [8], such that optima are centered about
7~2m/3 in the range 7=2-5. At higher values of 7 the
increased time between reorientation events reduces the
amount of folding of striations and so g decays to 1 for large
T.

Figure 8 shows the distribution of 7A{ over Q for Pe
=10'-10* where 7')\6 reflects the temporal periodicity of
eigenmodes in real space against the RPM offset period 7.
Hence for T)\f):O, the eigenmodes are purely real, whereas
for 7A; # 0 they form complex conjugate pairs (Fig. 9) which
are subharmonic for N7/ rational or quasiperiodic for
N7/ r irrational. For finite-precision calculations it is impos-
sible to gauge whether )\67/77' is truly irrational, however
from Fig. 8 distinct regions of either constant 7\ or
smoothly varying T)\f) are apparent, and so it is argued that
the smoothly varying regions contain irrational values of
T)\f)/ 7 and so correspond to quasiperiodic eigenmodes.
Boundaries between all regions (quasiperiodic, subharmonic,
and real) correspond to bifurcations in the dominant eigen-
mode across parameter space Q. As regions of T)\f)=0 or
T}\6= 7 covers most of the space Q in Fig. 8, period-doubling
bifurcations from purely real eigenmodes to doubly-periodic
eigenmodes (and vice versa) is the most common bifurca-
tion.

At low Pe, the eigenmodes are complex in the limit
7—0, with 7A{— O (Fig. 8). These eigenmodes tend to be-
come real with increasing Pe, with odd values of j for ratio-
nal ®/2m7=k/j tending to be real and even j tending com-
plex, as is most clearly evident in Fig. 8(b), where all values
of j correspond to mode-locked tongues which exhibit rota-
tionally symmetric eigenmodes (Fig. 3).

Common to all local maxima in g in Fig. 2 is a corre-
sponding bifurcation as reflected in a change in region in Fig.
8. This is especially clear at low Pe where the distributions in
Q are more regular, however the behavior appears to be
common across all Pe. For example, the global optimum in
Q for Pe=10* occurs at a bifurcation from real to doubly-
periodic eigenmodes, the real and imaginary ones of which
are shown in Fig. 9. As such, tracking of subharmonic bifur-
cations may present opportunities to develop new optimiza-
tion methods which do not require the full resolution of Q,
but rather utilize parameter space marching routes which ad-
here to this bifurcation boundary. The complicated nature of
the distribution of g suggests high-density global resolution
of Q is necessary for robust optimization, and so for more
complex flows the possibility of more efficient optimization
routines are welcome. The optimal value of ¢ over Q for
Pe=10* is 150.7, illustrating that simple reorientation alone
of the base dipole flow can result in scalar dispersion accel-
eration of more than two orders of magnitude, significantly
higher than corresponding value (11.6) at the same Pe for
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FIG. 8. (Color online) Distribution of the complex eigenmode
=102, (c) Pe=10?, and (d) Pe=10*.

other robustly optimized chaotic Stokes flows [24]. These
results suggest that significant enhancement of scalar disper-
sion is possible for potential flows, and presently there exist
no known barriers to application of scalar enhancement to
potential flows in general. To our knowledge, there are no
known studies of Lagrangian chaos or scalar dispersion en-
hancement thereof in three-dimensional (3D) potential flows,
however the extension to three spatial dimensions does not
introduce any barriers to the attainment of Lagrangian chaos.
The irrotational nature of potential flows in 3D persists, and
so unsteady flow is necessary to create heteroclinic or ho-
moclinic connections, unlike 3D steady flows such as the
ABC flow [25] which are steady and chaotic.

B. Implications for porous media

While applications of potential flow exist in microfluidic
mixing and transport [14], another significant field of appli-
cation is that of scalar transport enhancement in porous me-

(b)

FIG. 9. (Color online) (a) Real and (b) imaginary optimal
strange eigenmodes at bifurcation point for Pe=10*,
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wavelength 7\; over flow parameter space Q for (a) Pe=10!, (b) Pe

dia, an area which to date has received little attention in
chaotic advection. The connection between porous media
flow and potential flow occurs via the Darcy equation at the
macroscale, and so the results herein apply to porous media
systems at such length scales. The scope of this study corre-
sponds to ideal porous media in 2D with homogeneous po-
rosity and permeability distributions, with hydrodynamic dis-
persion modeled as Brownian diffusion. Clearly more
appropriate models are required for porous media applica-
tions, however Lagrangian chaos is expected to arise in 3D
and/or heterogeneous porous media as the mechanisms to
create heteroclinic or homoclinic connections persist.

Heterogeneous porous media introduces distributions in
both porosity and permeability, both of which have signifi-
cant impacts upon the transport dynamics in porous media.
The volume fraction distribution € in heterogenous media
renders the macroscopically averaged velocity field v no
longer divergence free, destroying the Hamiltonian and
hence conservative nature of the dynamical system (1). As €
is steady and satisfies the transport equation De/Dt=0, the
volume averaged velocity V= ev is divergence free, and so
the system is Hamiltonian with respect to this velocity field.
Likewise the ADE for the scalar ¢ is now conservative with
respect to €¢

¢

) 1o
€E+V~V¢—Pev (eV @), (29)

and so the Lagrangian topology of such flows is dictated by
the Hamiltonian structure of v and so accelerated scalar dis-
persion as quantified by Eq. (29) is expected to persist, in a
manner similar to that explored by Speetjens [26].
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Heterogeneous permeability generates rotation in Darcy
flows as the vorticity w=VkX Vp (where p is the flow po-
tential and k the permeability field) is now nonzero. How-
ever, Sposito [27] shows that steady 3D heterogeneous flows
still have zero helicity (defined as the integral of v-(V Xv)
over the flow domain), and so such porous media flows still
cannot exhibit chaotic dynamics [28]. Again, the introduction
of transient flow is necessary to generate Lagrangian chaos
in 3D and/or heterogeneous porous media. Note that these
results apply at the macroscale; steady porous media flows
are Stokesian (and possibly have nonzero helicity) at the mi-
croscale (where the full tortuosity of the pore structure is
resolved), and so give rise to Lagrangian chaos which mani-
fests as hydrodynamic dispersion at the macroscale [29].

Macroscopic modeling of hydrodynamic dispersion is a
field of ongoing research, with common models involving
longitudinal and transverse (with respect to the velocity di-
rection) diffusion terms which scale with velocity. Such cou-
pling of hydrodynamic dispersion with velocity is fundamen-
tally different to the Brownian diffusion represented as a
Laplacian operator in Eq. (2), and the nature of scalar dis-
persion due to Lagrangian chaos is expected to be qualita-
tively different. Although extension to three spatial dimen-
sions, hetereogeneous porosity and permeability and non-
Brownian diffusion are expected to alter the nature of both
Lagrangian chaos and scalar dispersion in porous media, the
gross mechanics of dispersion in potential flows is antici-
pated to persist, as the fundamental mechanism of the cre-
ation of transverse heteroclinic or homoclinic connections
can still be created by the necessary condition of the transient
crossing of streamlines. Certainly quantitative differences in
scalar dispersion are expected, however the significant accel-
eration for 2D potential flows at high Pe generates confi-
dence in the ability to achieve significant results in other
systems.

V. CONCLUSIONS

The aim of this work is to determine the potential for
Lagrangian chaos to accelerate scalar dispersion in potential
flows and identify governing mechanisms. To do so we re-
solve the dominant strange eigenmode ¢, and associated de-
cay rate \q of the advection-diffusion operator for a model
potential flow (the RPM flow) over the flow control param-
eter space Q for various Peclét numbers over Pe= 10'—10%
The decay rate A, quantifies the asymptotic rate of scalar
dispersion, and is shown to exhibit rich behavior over Q,
with mode-locking, period-doubling transitions to chaos and
fractally distributed maxima observed. The underlying La-
grangian topology [8] of the mixing template plays a major
role in the programming of the eigenmodes, which manifest
from the interplay between the advection (stretching and
folding) and diffusion (healing) operators. Indeed, at large
Pe, the distribution of \, over Q reflects both the symmetry
conditions which constrain the Lagragian topology of the
RPM flow, and the “instability bands” [8] which denote the
absence of stable (elliptic) period-1 points for the kinematic
problem is also evident. The global optimum at Pe=10* sits
on such a band, and this property is anticipated to persist at
higher Pe.

PHYSICAL REVIEW E 81, 046319 (2010)

The global (with respect to Q) optimum transitions from
regions of fully regular (integrable) Lagrangian topologies to
chaotic regions around Pe~ 10°, suggesting that chaotic ad-
vection is only beneficial in the advection-dominated regime
[6]. Such behavior is explained by the fact that the short
length scale (striated) scalar distributions programmed by
chaotic advection cannot be sustained at moderate Pe, how-
ever the more regular structures (such as the rotationally
symmetric eigenmodes on mode-locked tongues) pro-
grammed by nonmixing flows can be sustained in this range
and so exhibit faster scalar dispersion. It is believed that such
features are generic to scalar dispersion in flows which ex-
hibit Lagrangian chaos, and it is hypothesized that chaotic
dynamics are always optimal at large (=10%) values of Pe.
The results herein suggest significant enhancements for the
model RPM flow, where a 150-fold acceleration is observed
at Pe=10%, with the optimized acceleration scaling as \Pe.
Similar enhancements extend to unsteady 2D potential flows
in general, so long as scope exists for flow parameters to
achieve global Lagrangian chaos. These results indicate La-
grangian chaos to be a viable methodology to achieve pro-
cess enhancement in such flows.

The similarities between potential and Darcy flows moti-
vate us to consider application of scalar dispersion accelera-
tion via Lagrangian chaos in porous media. Such applica-
tions introduce considerations including heterogeneous
permeability and porosity and non-Brownian hydrodynamic
dispersion. As the fundamental ingredients of Lagrangian
chaos persist for such systems given the transient crossing of
streamlines, significant acceleration of scalar dispersion is
also expected to be possible. Clearly a significant body of
work is required to quantify and understand accelerated sca-
lar dispersion in heterogeneous systems, however this repre-
sents an important group of studies which shall help bridge
the gap between theoretical studies of potential flows and
application to a wide range of subsurface industries, includ-
ing geothermal energy, in situ mining, groundwater remedia-
tion, and shale oil recovery.

Clearly for more complex flow scenarios such those found
in natural geophysical systems, a detailed resolution of Q
may not be feasible, however the overarching linearity of
Darcy flows still facilitates exploitation of the underlying
symmetries which deliver the efficiencies of the composite
spectral method [15]. Observations that local optima in Q lie
along bifurcation boundaries between regular and subhar-
monic or quasiperiodic eigenmodes points to novel methods
to optimize the stirring protocol which does not require de-
tailed global resolution of Q. Such behavior is also observed
in Stokes flows [7], and so point to novel optimization meth-
ods for such systems in general.

The admission of Lagrangian chaos in porous media also
opens lines of research into unlocking complex geophysical
phenomena such as ore body formation and mineral deposi-
tion. It is likely that in certain geophysical scenarios chaotic
advection has an important role to play in the transport and
dispersion of chemical and mineral species, and it is postu-
lated that resonance effects may be responsible for the cre-
ation of large local depositions and the highly nonuniform
distribution of ore throughout the rock matrix. A more thor-
ough understanding of the nature and mechanisms of La-
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grangian chaos in heterogeneous media is required to answer
such questions, however the persistence of naturally occur-
ring periodic forcings over geological time scales suggests
some likelihood of the presence of chaotic dynamics. Reso-
lution of scalar transport dynamics over the parameter space

PHYSICAL REVIEW E 81, 046319 (2010)

Q may prove useful for the forward problem of optimization
of a geoengineering application, and also may provide a
means of tackling the inverse problem of determining what
potential subsurface processes have led to observed mineral
distributions.
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